Code Documentation

This page shows the documentation generated by sphinx automatically scanning our source code

Data Loaders

class ParticlePhaseSpace.DataLoaders.Load_IAEA(data_schema: ~numpy.dtype, constants: dict, input_data: (<class 'str'>, <class 'pathlib.Path'>), n_records: int = -1, offset=0, **kwargs)

this loads a binary varian IAEA sent through the topas forums. Because this format is so arbitrary, uses are required to pass a data_schema variable indicating the order and types of the data in the phase space, because there is no general way for us to figure this out. Please see here for examples of how to use this data loader.

Parameters:
  • data_schema (np.dtype) – the types and order of data, specified as an np.dtype

  • constants – any constants in the phase space

  • input_data – path to the a .phsp or .IAEAphsp file

  • n_records – specify how many rows of data to read in. By default, will read all rows.

  • offset – which row to start at. defaults to 0 (first row). Can be used in conjunction with n_records to read a large file in a series of small chunks

Example:

from ParticlePhaseSpace import PhaseSpace, DataLoaders
from pathlib import Path
import numpy as np

file_name = Path(r'/home/brendan/Downloads/Varian_TrueBeam6MV_01.phsp')
data_schema = np.dtype([
                       ('particle type', 'i1'),
                       ('Ek', 'f4'),
                       ('x', 'f4'),
                       ('y', 'f4'),
                       ('z', 'f4'),
                       ('Cosine X', 'f4'),
                       ('Cosine Y', 'f4')
                       ])
constants = {'weight': np.int8(1)}
ps_data = DataLoaders.Load_IAEA(data_schema=data_schema, constants=constants, input_data=file_name, n_records=int(1e5))
PS = PhaseSpace(ps_data)
class ParticlePhaseSpace.DataLoaders.Load_PandasData(input_data: (<class 'str'>, <class 'pathlib.Path'>), particle_type: (<class 'str'>, None) = None, units: ~ParticlePhaseSpace.__unit_config__.UnitSet = <ParticlePhaseSpace.__unit_config__.UnitSet object>)

loads in pandas data of the format. This is used internally by ParticlePhaseSpace, and can also be used externally in cases where it is not desired to write a dedicated new data loader:

from ParticlePhaseSpace import DataLoaders
import pandas as pd

demo_data = pd.DataFrame(
    {'x [mm]': [0, 1, 2],
     'y [mm]': [0, 1, 2],
     'z [mm]': [0, 1, 2],
     'px [MeV/c]': [0, 1, 2],
     'py [MeV/c]': [0, 1, 2],
     'pz [MeV/c]': [0, 1, 2],
     'particle type [pdg_code]': [11, 11, 11],
     'weight': [0, 1, 2],
     'particle id': [0, 1, 2],
     'time [ps]': [0, 1, 2]})

data = DataLoaders.Load_PandasData(demo_data)
class ParticlePhaseSpace.DataLoaders.Load_TibarayData(input_data: (<class 'str'>, <class 'pathlib.Path'>), particle_type: (<class 'str'>, None) = None, units: ~ParticlePhaseSpace.__unit_config__.UnitSet = <ParticlePhaseSpace.__unit_config__.UnitSet object>)

Load ASCII data from tibaray of format x y z rxy Bx By Bz G t m q nmacro rmacro ID:

data_loc = Path(r'../tests/test_data/tibaray_test.dat')
data = DataLoaders.Load_TibarayData(data_loc, particle_type=11)
PS = PhaseSpace(data)
class ParticlePhaseSpace.DataLoaders.Load_TopasData(input_data: (<class 'str'>, <class 'pathlib.Path'>), particle_type: (<class 'str'>, None) = None, units: ~ParticlePhaseSpace.__unit_config__.UnitSet = <ParticlePhaseSpace.__unit_config__.UnitSet object>)

DataLoader for Topas data. This data loader will read in both ascii and binary topas phase space (phsp) files. At present, we do not handle time or particle-id fields which may or may not be present in topas data. Behind the scenes, it relies on topas2numpy:

from ParticlePhaseSpace import DataLoaders
from ParticlePhaseSpace import PhaseSpace
from pathlib import Path

data_loc = Path(r'../tests/test_data/coll_PhaseSpace_xAng_0.00_yAng_0.00_angular_error_0.0.phsp')

data = DataLoaders.Load_TopasData(data_loc)
PS = PhaseSpace(data)
class ParticlePhaseSpace.DataLoaders.Load_p2sat_txt(input_data: (<class 'str'>, <class 'pathlib.Path'>), particle_type: (<class 'str'>, None) = None, units: ~ParticlePhaseSpace.__unit_config__.UnitSet = <ParticlePhaseSpace.__unit_config__.UnitSet object>)

Adapted from the p2sat ‘txt’ loader; loads csv data of format # weight x (um) y (um) z (um) px (MeV/c) py (MeV/c) pz (MeV/c) t (fs) Note that we use a hard coded seperator value “,”.

available_units = ParticlePhaseSpaceUnits()
data_url = 'https://raw.githubusercontent.com/lesnat/p2sat/master/examples/ExamplePhaseSpace.csv'
file_name = 'p2sat_txt_test.csv'
request.urlretrieve(data_url, file_name)
# read in
ps_data = DataLoaders.Load_p2sat_txt(file_name, particle_type='electrons', units=available_units('p2_sat_UHI'))
PS = PhaseSpace(ps_data)

PhaseSpace

class ParticlePhaseSpace._ParticlePhaseSpace.PhaseSpace(data_loader)

This class holds phase space data in a pandas dataframe, and allowed users to utilise common libraries for plotting and analysis. It accepts data from any DataLoader Basic use is documented here.

Parameters:

data_loader (_DataLoadersBase) – an instance of ParticlePhaseSpace.DataLoaders._DataLoadersBase

assess_density_versus_r(Rvals=None, verbose: bool = True, beam_direction: str = 'z')

Assess how many particles are in a given radius

Parameters:
  • Rvals – list of rvals to assess in mm, e.g. np.linspace(0, 2, 21)

  • verbose – prints data to screen if True

  • beam_direction (str, optional) – main direction in which beam is travelling. ‘x’, ‘y’, or ‘z’ (default)

Return density_data:

a dataframe containing the roi vals and the proportion of particles inside

calculate_twiss_parameters(beam_direction='z')

Calculate the RMS twiss parameters

Parameters:

beam_direction (str, optional) – main direction in which beam is travelling. ‘x’, ‘y’, or ‘z’ (default)

Returns:

None

filter_by_boolean_index(boolean_index, in_place: bool = False, split: bool = False, verbose: bool = True)

filter data by input boolean index, keeping ‘True’ and discarding ‘False’

Parameters:
  • boolean_index – an 1D array like structure of True and False values

  • in_place – if True, existing object is modified; if False a new object is returned

  • split – if True, will return two phase space objects: one where boolan_index=True and one where it equals False

filter_by_time(t_start, t_finish, in_place: bool = False)

Generates a new PhaseSpace which only contains particles inside t_start and t_finish (inclusive). t_start and t_finish should be specfied in ps.

Parameters:
  • t_start (float) – particles with t<t_start are removed.

  • t_finish (float) – particleswith t>t_finish are removed

Returns:

new_instance: a new phase space object with data filtered by time

get_downsampled_phase_space(downsample_factor: int = 10)

return a new phase space object which randomlt samples from the larger phase space. the new phase space has size ‘original data/downsample_factor’. the data is shuffled before being randomly sampled.

Parameters:

downsample_factor (int) – the factor to downsample the phase space by

merge(in_place=False)

merges identical data points by combining their weights. Typically, before performing a merge operation you will want to perform a ‘regrid’ operation. The underlying algorithm was developed by Leo Esnault for the p2sat code. Merged particles retain the particle ID from the first particle in the merged group.

Parameters:

in_place – if True, self is operated on; if False, a new PhaseSpace is returned

Returns:

new_PS if in_place is False.

print_energy_stats(file_name=None)

Prints a summary of energy stats to the screen, which can optionally be saved to json

Parameters:

file_name (Path, str, optional) – if specified, the data is saved as json in file_name

print_twiss_parameters(file_name=None, beam_direction: str = 'z')

prints the twiss parameters if they exist they are always printed to the screen. if filename is specified, they are also saved to file as json

Parameters:
  • file_name (str or Path, optional) – optional filename to write twiss data to. should be absolute path to an existing directory

  • beam_direction (str, optional) – the direction the beam is travelling in. “x”, “y”, or “z” (default)

resample_via_gaussian_kde(n_new_particles_factor: int = 1, interpolate_weights: (<class 'bool'>, None) = None)

Generate a new phase space based on the existing data, by fitting a gaussian kernel density estimate to the 6-D space: x y z px py pz If interpolate_weights is set to True, we instead attempt to interpolate within a 7D space: x y z px py pz weight This method is fairly experimental and should be used with extreme caution!

Parameters:

n_new_particles_factor – the returned Phase space will have size len(self)*n_new_particles_factor. In other words, when n_new_particles_factor=1, the new PhaseSpace will be the same size as the original.

Returns:

new_PS: a new PhaseSpace object

reset_phase_space()

reduce self._ps_data to only the required columns delete any other derived quantities such as twiss parameters this can be called whenever you want to reduce the memory footprint

set_units(new_units: UnitSet)

converts ps_data to a new unit set. This will also reset the phase space to just the required columns

Parameters:

new_units (UnitSet) – the new units to convert to

sort(quantities_to_sort: (None, <class 'list'>) = None)

sort the data. Data will be sorted according quantities_to_sort, in order of quantity. Operates in place. example:

PS.sort(quantities_to_sort='x')
PS.sort(quantities_to_sort=['x', 'y', 'z', 'px'])
Parameters:

quantities_to_sort

PhaseSpace.plot

class ParticlePhaseSpace._ParticlePhaseSpace._Plots(PS)
energy_hist_1D(n_bins: int = 100, grid: bool = False)

generate a histogram plot of paritcle energies. Each particle spcies present in the phase space is overlaid on the same plot.

Parameters:
  • n_bins (int, optional) – number of bins in histogram

  • grid (bool, optional) – turns grid on/off

Returns:

None

momentum_hist_1D(n_bins: int = 100, alpha: float = 0.5, grid: bool = False)

plot a histogram of particle momentum in x, y, z. a new histogram is generated for each particle species. histograms are overlaid.

Parameters:
  • n_bins – number of bins in histogram

  • alpha – controls transparency of each histogram.

  • grid (bool, optional) – turns grid on/off

n_particles_v_time(n_bins: int = 100, grid: bool = False)

basic plot of number of particles versus time; useful for quickly seperating out different bunches of electrons such that you can apply the ‘filter_by_time’ method

Parameters:
  • n_bins (int) – number of bins for histogram

  • grid (bool, optional) – turns grid on/off

particle_positions_hist_2D(beam_direction: str = 'z', quantity: str = 'intensity', grid: bool = True, log_scale: bool = False, bins: int = 100, normalize: bool = True, xlim=None, ylim=None, vmin=None, vmax=None)

plot a 2D histogram of data, either of accumulated number of particules or accumulated energy

Parameters:
  • beam_direction (str, optional) – the direction the beam is travelling in. “x”, “y”, or “z” (default)

  • xlim (list, optional) – set the xlim for all plots, e.g. [-2,2]

  • ylim (list, optional) – set the ylim for all plots, e.g. [-2,2]

  • quantity (str) – quantity to accumulate; either ‘intensity’ or ‘energy

  • grid (bool, optional) – turns grid on/off

  • bins (int, optional) – number of bins in X/Y direction. n_pixels = bins ** 2

  • vmin (float, optional) – minimum color range

  • vmax (float, optional) – maximum color range

  • log_scale (bool, optional) – if True, log scale is used

  • normalize (bool, optional) – if True, data is normalized to 0-100 - otherwise raw values are used

Returns:

None

particle_positions_scatter_2D(beam_direction: str = 'z', weight_position_plot: bool = False, grid: bool = True, xlim=None, ylim=None)

produce a scatter plot of particle positions. one plot is produced for each unique species.

Parameters:
  • beam_direction (str, optional) – the direction the beam is travelling in. “x”, “y”, or “z” (default)

  • weight_position_plot (bool) – if True, a gaussian kde is used to weight the particle positions. This can produce very informative and useful plots, but also be very slow. If it is slow, you could try downsampling the phase space first using get_downsampled_phase_space

  • grid (bool, optional) – turns grid on/off

  • xlim (list or None, optional) – set the xlim for all plots, e.g. [-2,2]

  • ylim (list or None, optional) – set the ylim for all plots, e.g. [-2,2]

Returns:

None

position_hist_1D(n_bins: int = 100, alpha: float = 0.5, grid: bool = False)

plot a histogram of particle positions in x, y, z. a new histogram is generated for each particle species. histograms are overlaid.

Parameters:
  • n_bins – number of bins in histogram

  • alpha – controls transparency of each histogram.

  • grid (bool, optional) – turns grid on/off

transverse_trace_space_hist_2D(beam_direction: str = 'z', plot_twiss_ellipse: bool = True, grid: bool = True, bins: int = 100, log_scale: bool = True, normalize: bool = True, xlim=None, ylim=None, vmin=None, vmax=None)

plot the intensity of the beam in trace space

Parameters:
  • beam_direction (str, optional) – the direction the beam is travelling in. “x”, “y”, or “z” (default)

  • xlim (list, optional) – set the xlim for all plots, e.g. [-2,2]

  • ylim (list, optional) – set the ylim for all plots, e.g. [-2,2]

  • plot_twiss_ellipse (bool, optional) – if True, RMS ellipse from twiss parameters is overlaid.

  • grid (bool, optional) – turns grid on/off

  • log_scale (bool, optional) – if True, log scale is used

  • bins (int, optional) – number of bins in X/Y direction. n_pixels = bins ** 2

  • vmin (float, optional) – minimum color range

  • vmax (float, optional) – maximum color range

transverse_trace_space_scatter_2D(beam_direction: str = 'z', plot_twiss_ellipse: bool = True, grid: bool = True, xlim=None, ylim=None)

Generate a scatter plot of x versus x’=px/pz and y versus y’=py/pz (these definitions are for beam_direction=’z’)

Parameters:
  • beam_direction (str, optional) – main direction in which beam is travelling. ‘x’, ‘y’, or ‘z’ (default)

  • plot_twiss_ellipse (bool, optional) – if True, will overlay the RMS twiss ellipse onto the trace space

  • xlim (list, optional) – set xlim, e.g. [-2,2]

  • ylim (list, optional) – set ylim, e.g. [-2,2]

  • grid (bool, optional) – turns grid on/off

PhaseSpace.fill

class ParticlePhaseSpace._ParticlePhaseSpace._Fill_Methods(PS)

Methods for calculating secondary quantities and adding them to ps_data

beta_and_gamma()

add the relatavistic beta and gamma factors into self._PS._ps_data

direction_cosines()

Calculate direction cosines, which are required for topas import: U (direction cosine of momentum with respect to X) V (direction cosine of momentum with respect to Y)

kinetic_E()
Uses energy-momementum relation to add

kinetic energy into self._ps_data

relativistic_mass()

add relativistic mass to ps_data

rest_mass()

add rest mass to self._PS._ps_data :return:

velocity()

add velocities in m/s into self._PS._ps_data

PhaseSpace.transform

Data Exporters

class ParticlePhaseSpace.DataExporters.CSV_Exporter(PhaseSpaceInstance: ~ParticlePhaseSpace._ParticlePhaseSpace.PhaseSpace, output_location: (<class 'str'>, <class 'pathlib.Path'>), output_name: str)

Export data to a csv format, in particular one which can be read by p2sat read text # weight x (um) y (um) z (um) px (MeV/c) py (MeV/c) pz (MeV/c) t (fs)

class ParticlePhaseSpace.DataExporters.Topas_Exporter(PhaseSpaceInstance: ~ParticlePhaseSpace._ParticlePhaseSpace.PhaseSpace, output_location: (<class 'str'>, <class 'pathlib.Path'>), output_name: str, binary: bool = False)

output the phase space to topas ascii or binary format. the default output is ascii, the user can output binary by passing the flag binary as a boolean e.g. binary=True

Note:
  • we do not handle any time features

  • every particle in the phase space is flagged as being a new history.